*F***-Separated Sets and** *F*−**Connected Spaces**

M. Baloush1* , T. Noiri²

¹National University College of Technology, Amman, Jordan 2 22949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142, Japan *For Correspondence; Tel. +962799614970, Email: *malohblosh@yahoo.com*

ABSTRACT – In this paper, we introduce the definitions of *F*−separated sets, *F*−connected sets and *F* −compact sets and study their properties.

Keywords: *F* -open set, *F* -separated set, *F* −connected space, *F* −compact sets

1 INTRODUCTION

In 2023, Alqahtani has introduced the notion of F -open sets in a topological space. Every F -open set is an open set but not conversely. The family of F -open sets is not necessarily topology but has similar properties with open sets. In [1] , the author obtained many properties of F -open sets. In this paper, we introduce F -separated sets and F -connected sets. In Section 2, we obtain several properties of F -separated sets. In Section 3, we investigate the further properties of F connected and F -compact relative sets. Finally, it is shown that F -connected sets are preserved under F -continuous surjections.

Definition 1.1. [1] *An open subset A of a topological space* (X, τ) is called an F –open set if $Cl(A) \backslash A$ is a finite set. *That is, A is an open set and the frontier of A is a finite set.*

Definition 1.2. [1] *A closed subset A of a topological* $space(X, \tau)$ *is called an F-closed set if A* $\Int(A)$ *is a finite set. That is, A is a closed set and the frontier of A is a finite set.*

Definition 1.3. [1] *Let U be a subset of a topological space* (X, τ) . Then, the F-closure of U is defined as the *intersection of all F-closed sets containing U, and is denoted by* $\mathcal{C} \mathcal{L}^F(U)$ *.*

2 -SEPARATED SETS AND THIER PROPERTIES

In this section we will define the F -separated sets and discuss their properties.

Definition 2.1. *Let* (X, τ) *be a topological space and A, B be nonempty subsets of X. Then A and B are said to be* F *separated if* $A \cap Cl^F(B) = \emptyset$ *and* $Cl^F(A) \cap B = \emptyset$.

Theorem 2.2. Let A and B be F – separated sets in a space *X*, and let D and *K* be nonempty subsets of A and B, *respectively. Then D and K are also* F *– separated in X.*

Proof. Let D and K be nonempty subsets of the F separated sets A and B, respectively. Since $D \subseteq A$, then $Cl^F(D) \subseteq Cl^F(A)$. But $Cl^F(A) \cap B = \emptyset$ which implies that $Cl^F(D) \cap B = \emptyset$, and since $K \subseteq B$, then

$$
ClF(D) \cap K = \emptyset \cdots \cdots (1).
$$

Similarly, since $K \subseteq B$, then $Cl^F(K) \subseteq Cl^F(B)$. Now $A \cap Cl^F(B) = \emptyset$ which implies that $A \cap Cl^F(K) = \emptyset$, and since $D \subseteq A$, then

$$
D \cap Cl^F(K) = \emptyset \cdots (2)
$$

By (1) and (2), we get $Cl^F(D) \cap K = \emptyset$ and $D \cap Cl^F(K) =$ \emptyset . Therefore, *D* and *K* are *F* – separated in *X*.

Theorem 2.3. Let A, B be nonempty disjoint subsets of a *space X such that A and B are either both* $F -$ *open or both* $F - closed$. Then A and B are $F - separated$.

Proof. Let A , B be nonempty subsets of X .

(1) Suppose that A and B are both $F -$ closed. Since

 $A \cap B = \emptyset$, then $A \cap B = A \cap Cl^F(B) = Cl^F(A) \cap$ \emptyset . Therefore, A and B are F – separated.

(2) Suppose that A and B are both $F -$ open. Since $A \cap B = \emptyset$. Then $A \subseteq X - B$ which implies that $Cl^F(A) \subseteq Cl^F(X - B) = X - B$. Hence $Cl^F(A) \subseteq$ B, and $Cl^F(A) \cap B = \emptyset$. Similarly, we have $Cl^F(B) \cap$ $A = \emptyset$. Therefore A and B are F – separated.

Theorem 2.4. *Let A, B be nonempty subsets of X such that A, B are either both F – open or both F – closed. If* $C = A \cap$ $(X - B)$ and $D = B \cap (X - A)$, then C, D are F – separated. *Proof.* Let A , B be nonempty subsets of X .

- (1) Suppose that A and B are both $F -$ closed. Since $C = A \cap (X - B)$, then $C \subseteq A$, which implies that $Cl^F(C) \subseteq Cl^F(A) = A$. Hence $F(C) \cap D = \emptyset.$ Similarly, since $D = B \cap (X - A)$, then $D \subseteq B$, which implies that $Cl^F(D) \subseteq Cl^F(B) = B$. Hence $Cl^F(D) \cap$ $C = \emptyset$. Therefore C and D are F -separated.
- (2) Suppose that A and B are both $F -$ open, and since $C = A \cap (X - B)$, then $C \subseteq X - B$, which implies that $Cl^F(C) \subseteq Cl^F(X - B) = X - B$. Hence $Cl^F(C) \cap$ \emptyset . Similarly, we have $Cl^F(D) \cap C = \emptyset$. Therefore C and D are F – separated.

Theorem 2.5. *Let A, B be nonempty subsets of X. Then A, B* are F – separated if and only if there exist F – open sets U *and V such that* $A \subseteq U$, $B \subseteq V$, $A \cap V = \emptyset$, *and* $B \cap U = \emptyset$. *Proof.* Necessity. Let A, B be $F -$ separated sets. Since $A \cap Cl^F(B) = \emptyset$ and $Cl^F(A) \cap B = \emptyset$, then $A \subseteq X - Cl^F(B)$ and $B \subseteq X - Cl^F(A)$. Since $Cl^F(A)$, $Cl^F(B)$ are F – closed, then $U = X - Cl^F(B)$, $V = X - Cl^F(A)$ are $F -$ open sets and $A \subseteq U$ and $B \subseteq V$. Now $A \subseteq Cl^F(A) = X - V$, then $A \cap V = \emptyset$. Similarly, Since $B \subseteq Cl^F(B) = X - U$, then

Sufficiency. let U and V be $F -$ open sets such that $A \subseteq U$, $B \subseteq V$, $A \cap V = \emptyset$, and $B \cap U = \emptyset$. Since U and V are F – open sets, then $X - U$ and $X - V$ are F – closed sets. But $A \cap B = \emptyset$, then $A \subseteq X - V$ and $B \subseteq X - U$. Now, $Cl^F(A) \subseteq Cl^F(X - V) = X - V$ which implies that $Cl^F(A) \cap$ $V = \emptyset$ and then $Cl^F(A) \cap B = \emptyset$. Similarly, since U, then $Cl^F(B) \subseteq Cl^F(X-U) = X-U$ which implies that $Cl^F(B) \cap U = \emptyset$ and then $Cl^F(B) \cap A = \emptyset$. Therefore, are F – separated.

3 -CONNECTED SETS AND THIER PROPERTIES

In this section we will define the F -connected sets and discuss their properties.

Definition 3.1. A subset A of X is said to be F – connected if *it can not be represented as the union of two nonempty* F *separated sets. If X is* F -connected, then *X* is called an F -

 $B \cap U = \emptyset$.

connected space.

Theorem 3.2. A non-empty subset C of X is F – connected *if and only if for every pair of* F – *separated sets A and B in X* with $C \subseteq A \cup B$, one of the following possibilities holds:

- 1. $C \subseteq A$ and $C \cap B = \emptyset$.
- 2. $C \subseteq B$ and $C \cap A = \emptyset$.

Proof. Necessity. Let C be an F – connected subset of X. Let A and B be F-separated sets in X such that $C \subseteq A \cup B$, then $C \cap B = \emptyset$ and $C \cap A = \emptyset$ can not hold at the same time. If $C \cap B = \emptyset$, then $C \subseteq A$, and if $C \cap A = \emptyset$, then $C \subseteq B$. Finally, if $C \cap B \neq \emptyset$ and $C \cap A \neq \emptyset$, then by Theorem [2.2,](#page-0-0) both $C \cap B$ and $C \cap A$ are F – separated and $C = (C \cap B) \cup (C \cap A)$ which is a contradiction since C is an $F -$ connected subset of X. Sufficiency. Suppose C is not an F – connected set of X, then there exists two nonempty F – separated sets A and B in X such that $C = A \cup B$. By conditions (1) and (2) we have either $C \cap B = \emptyset$ or $C \cap A = \emptyset$ which implies that either $A = \emptyset$ or $B = \emptyset$ which is a contradiction since A and B are nonempty sets in X. Therefore, C is an F – connected set of X .

Theorem 3.3. Let U be a subset of of X. Then the following *are equivalent;*

- 1. U is F connected,
- 2. *There exist no two* $F closed$ sets A and B such that $A \cap U \neq \emptyset$, $B \cap U \neq \emptyset$, $U \subseteq A \cup B$ and $A \cap B \cap B$ $U = \emptyset$,
- 3. There exist no two $F closed$ sets A and B such that $U \nsubseteq A, U \nsubseteq B, U \subseteq A \cup B$ and $A \cap B \cap U = \emptyset$.

Proof.

1. $(1 \Rightarrow 2)$: Suppose that there exist two $F -$ closed sets A and B such that $A \cap U \neq \emptyset$, $B \cap U \neq \emptyset$, $U \subseteq A \cup B$ and $A \cap B \cap U = \emptyset$. Then $(A \cap U) \cup (B \cap U) = (A \cup B) \cap U = U$, and $Cl^F(A \cap U) \cap (B \cap U) \subseteq Cl^F(A) \cap (B \cap U) =$

 $B \cap U = \emptyset$

Hence, $Cl^F(A \cap U) \cap (B \cap U) = \emptyset$. By the same argument we get $(A \cap U) \cap Cl^F(B \cap U) =$ Therefore, U is not F – connected. This shows that (1) implies (2).

- 2. $(2 \Rightarrow 3)$: Let (2) hold and suppose that there exist two F – closed sets A and B such that $U \nsubseteq A, U \nsubseteq$ $B, U \subseteq A \cup B$ and $A \cap B \cap U = \emptyset$. Then $A \cap U \neq \emptyset$ and $B \cap U \neq \emptyset$ which is a contradiction.
- 3. (3) \Rightarrow (1): Suppose that U is not F connected. Then there exist two non-empty F – separated sets C and D such that $U = C \cup D$. Now $Cl^F(C) \cap D$ $Cl^F(D) = \emptyset$. Let $A = Cl^F(C)$ and $B = Cl^F(D)$, then $U \subseteq A \cup B$ and $Cl^F(C) \cap Cl^F(D) \cap (C \cup D) =$ $\left({\mathcal Cl}^F(\mathcal C)\cap {\mathcal Cl}^F(D)\cap (\mathcal C)\right)\cup \left({\mathcal Cl}^F(\mathcal C)\cap {\mathcal Cl}^F(D)\cap \right.$ (D)) \subset $(Cl^F(D) \cap C)$ \cup $(D \cap Cl^F(C) = \emptyset$. Now if

 $U \subseteq A$, then $Cl^F(D) \cap U = B \cap U = B \cap (U \cap A) =$ \emptyset , which is a contradiction, then $U \nsubseteq A$. Similarly, $U \nsubseteq B$. Thus U is a F – connected.

Theorem 3.4. *Let U be an* F *– connected subset of X. If* $U \subseteq V \subseteq Cl^F(U)$, then V is also F – connected.

Proof. Let U be an F – connected subset of X such that

 $U \subseteq V \subseteq Cl^F(U)$. Suppose that V is not F – connected. Then by Theorem [3.3,](#page-1-0) there exists two $F -$ closed sets A and B such that $V \nsubseteq A, V \nsubseteq B, V \subseteq A \cup B$ and $A \cap B \cap V = \emptyset$. Since $U \subseteq V$, then $U \subseteq A \cup B$ and $A \cap B \cap U = \emptyset$. Now if $U \subseteq A$, then $Cl^F(U) \subseteq Cl^F(A) = A$. Therefore, $V \subseteq A$ which is a contradiction. Thus $U \not\subseteq A$. By the same argument, $U \nsubseteq B$. Which contradicts that U is a F – connected.

Corollary 3.5. If *U* is an F – connected subset of *X*, then $Cl(U)$ is *F*-connected.

Prof. Since every *F*-open set is open, $Cl(U) \subset Cl^F(U)$ and by Theorem 3.4, $Cl(U)$ is F-connected.

Theorem 3.6. *If A* and *B* are F – connected subsets of a *space X and A,B are not F-separated, then* $A \cup B$ *is Fconnected.*

Proof. Let A and B be F – connected subsets of a space X. Suppose that $A \cup B$ is not F-connected. Then, there exist two non-empty F-separated sets G and H such that $A \cup B = G \cup$ H. Hence, $Cl^F(G) \cap H = \emptyset$ and $G \cap Cl^F(H) = \emptyset$. Since and B are F-connected, $A \subset G$ or $A \subset H$, and $B \subset G$ or $B \subset H$. Therefore, (i) $A \subset G$ and $B \subset H$ or (ii) $A \subset H$ and $B\subset G$.

(i) Suppose that $A \subset G$ and $B \subset H$. Then, $A \cap H \subset G \cap H =$ \emptyset and $B \cap G \subset H \cap G = \emptyset$. Therefore, $(A \cup B) \cap G =$ $(A \cap G) \cup (B \cap G) = (A \cap G) = A$ and $(A \cup B) \cap H =$ $(A \cap H) \cup (B \cap H) = (B \cap H) = B$. Hence $Cl^F(A) \cap$ $Cl^F([A\cup B)\cap G])\cap [(A\cup B)\cap H]\subset Cl^F(G)\cap$

and $Cl^F(A) \cap B = \emptyset$. Similarly, we obtain $A \cap Cl^F(B) = \emptyset$. This shows that A , B are F -separated. This is a contradiction.

(ii) Suppose that $B \subset G$ and $A \subset H$. Then, $B \cap H \subset G \cap H = \emptyset$ and $A \cap G \subset H \cap G = \emptyset$. Therefore, $(A \cup B) \cap H = (A \cap H) \cup (B \cap H) = A \cap H = A$ and $(A \cup B) \cap G = (A \cap G) \cup (B \cap G) = B \cap G = B$. Hence $Cl^F(A) \cap B = Cl^F([(A \cup B) \cap H]) \cap B \subset Cl^F(H) \cap$ and $A \cap Cl^F(B) = A \cap Cl^F[(A \cup B) \cap G] \subset H \cap Cl^F(G) =$ \emptyset . This shows that A, B are F-separated. This is a contradiction.

Therefore, $A \cup B$ is F -connected.

Corollary 3.7. If A and B are F – connected subsets of a space X and A , B are disjoint, then $A \cup B$ is F -connected.

Proof. If A, B are disjoint, then A, B are not F -separated. By Theorem 3.1, $A \cup B$ is F-connected.

Theorem 3.8. *If* $\{M_{\alpha} : \alpha \in \Delta\}$ *is a nonempty family of Fconnected subsets of a space* (X, τ) *and* $n_{\alpha \in \Delta} M_{\alpha} \neq \emptyset$ *, then* $\cup_{\alpha \in \Delta} M_{\alpha}$ is *F*-connected.

Proof. Suppose that $\cup_{\alpha \in \Delta} M_{\alpha}$ is not *F*-connected. Then there exist nonempty F-separated sets H, G such that $\bigcup_{\alpha \in \Delta} M_{\alpha} =$ H \cup G. Since $\cap_{\alpha \in \Delta} M_{\alpha} \neq \emptyset$, there exists a point $x \in \cap_{\alpha \in \Delta} M_{\alpha}$ and $x \in U_{\alpha \in \Delta} M_{\alpha}$. Therefore, $x \in H$ or $x \in G$. (i) Let $x \in H$. Since $x \in M_\alpha$ for every $\alpha \in \Delta$ and $M_\alpha \subset H$ \cup G, by Theorem 3.2, $M_{\alpha} \subset H$ or $M_{\alpha} \subset G$. Since $H \cap G = \emptyset$, we have the following: (a) if $M_{\alpha} \subset H$ for every $\alpha \in \Delta$, then $\bigcup_{\alpha \in \Delta} M_{\alpha} \subset H$ and $G = \emptyset$. This is a contradiction. (b) if $M_{\alpha} \subset G$ for every $\alpha \in \Delta$, then $\cup_{\alpha \in \Delta} M_{\alpha} \subset G$ and $H = \emptyset$. This is a contradiction. (ii) Let $x \in G$. Since $x \in M_\alpha$ for every $\alpha \in \Delta$ and $M_\alpha \subset H$ U G, by Theorem 3.2, $M_{\alpha} \subset H$ or $M_{\alpha} \subset G$. Since $H \cap G = \emptyset$, we have the following: (a) if $M_{\alpha} \subset G$ for every $\alpha \in \Delta$, then $\bigcup_{\alpha \in \Delta} M_{\alpha} \subset G$ and $H = \emptyset$. This is a contradiction. (b) if $M_{\alpha} \subset H$ for every $\alpha \in \Delta$, $\cup_{\alpha \in \Delta} M_{\alpha} \subset H$ and $G = \emptyset$. This is a contradiction. Therefore, x is not contained in $H \cup G =$ $\cup_{\alpha \in \Delta} M_{\alpha}$. This is a contradiction. Consequently, $\cup_{\alpha \in \Delta} M_{\alpha}$ is F-connected.

Corollary 3.9. Let (X, τ) be a topological space. Then:

- *1)* If each pair of points x, y in a space (X, τ) lies in some *F*-connected subset $E_{x,y}$ of *X*, then *X* is *F*-connected.
- 2) If $X = \bigcup_{n=1}^{\infty} X_n$, where each X_n is F-connected and $X_{n-1} \cap X_n \neq \emptyset$ for each $n \geq 2$, then *X* is *F*-connected. *Proof.*

1) Choose a point $a \in X$ and fix it. Then, for each point $x \in X$, there exists an F-conneced set E_x such that $x, a \in E_x$ and hence $X = \bigcup_{x \in X} E_x$. By Theorem 3.8, X is F-connected.

2) X_1 is F-connected. If $X_1 \cup ... \cup X_{n-1}$ is F-connected, by Theorem 3.1 $A_n = X_1 \cup ... \cup X_n$ is F-connected for $n =$ 1,2,..., where $\cap A_n = X_1 \neq \emptyset$ and by Theorem 3.8 $X =$ $\bigcup_{n=1}^{\infty} A_n$ is *F*-connected.

Theorem 3.10. *Let* $\{M_{\alpha}: \alpha \in \Delta\}$ *be a nonempty family of Fconnected subsets of a space* (X, τ) *and A be a nonempty Fconnected set. If* $A \cap M_{\alpha} \neq \emptyset$ *for each* $\alpha \in \Delta$ *, then* $A \cup$ $(U_{\alpha \in \Delta} M_{\alpha})$ is *F*-connected.

Proof. Since $A \cap M_{\alpha} \neq \emptyset$ for each $\alpha \in \Delta$, by Theorem 3.6, $A \cup M_{\alpha}$ is F-connected for each $\alpha \in \Delta$. Moreover, $A \cup$ $(\cup_{\alpha \in \Delta} M_{\alpha}) = \cup (A \cup_{\alpha \in \Delta} M_{\alpha})$ and $\cap (A \cup M_{\alpha}) \supset A \neq \emptyset$. Therefore, by Theorem 3.3 A \cup ($\cup_{\alpha \in \Delta} M_{\alpha}$) is F-connected.

Definition 3.11. *A function* $f: (X, \tau) \rightarrow (Y, \sigma)$ *is said to be F*-continuous if for each open set $V \in \sigma$, $f^{-1}(V)$ is *F*-open *in* (X, τ) *.*

Theorem 3.12. *If* $f:(X, \tau) \rightarrow (Y, \sigma)$ *is an F-continuous surjection and* (X, τ) *is F-connected, then* (Y, σ) *is Fconnected.*

Proof. Suppose that (Y, σ) is not F-connected. Then, there exist F-separated sets A and B such that $A \neq \emptyset$, $B \neq \emptyset$, $Y = A \cup B$. Hence $Cl^F(A) \cap B = \emptyset = A \cap Cl^F(B)$. Since is F-continuous, $f^{-1}(Cl(A))$ is F-closed and $f^{-1}(A) \subset$ f^{-} $(Cl(A))$. Therefore, $Cl^F(f^{-1}(A)) \subset f^{-1}(Cl(A)) \subset$ $f^{-1}(\mathcal{C}l^F$ and hence $f^{-1}(A)$ \cap $f^{-1}(B) \subset$ $f^{-1}(Cl^F(A)) \cap f^{-1}(B) = f^{-1}(Cl^F(A) \cap B) = \emptyset$. Similarly, we obtain $f^{-1}(A) \cap Cl^F(f^{-1}(B)) = \emptyset$. Hence, $f^{-1}(A)$ and $f^{-1}(B)$ are *F*-separated. Since f is surjective, $f^{-1}(A)$ and $f^{-1}(B)$ are nonempty. Moreover, $X = f^{-1}(Y) =$ $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$. This shows that (X, τ) is not F -connected.

After we studied the properties of F -connected and F separated sets we can state the relation between F -connected and F – separated with connected and separated sets in the following proposition:

Proposition 21.

1. Let A, B be nonempty subsets of X. If A, B are *F* $-$ *separated, then A, B are separated.*

2. Let U be a subset of X. If U is connected, then it is F -connected.

Proof.

1. If A, B are F -separated, then $A \cap Cl^F(B)$ = $Cl^F(A) \cap B$. Since $\tau F \subset \tau$, $Cl(A) \subset Cl^F(A)$ and $Cl(B) \subset$ $Cl^F(B)$. Hence $A \cap Cl(B) = empty = Cl(A) \cap B$. and are separated.

2. Suppose that U is not F -connected. Then, there exist nonempty F -separated sets A and B such that $U = A \cup B$. By (1) , A , B are separated and U is not connected.

Definition 3.13. *A function* $f: (X, \tau) \rightarrow (Y, \sigma)$ *is* $F - open$ *[1] (resp. F -preserving) if* $f(U)$ *is F -open in Y for each open (resp.* F –*open) set* U *in* X *.*

It is obvious that every F-open function is F-preserving.

Definition 3.14. Let (X, τ) be a topological space and A be a subset of X. A is said to be F -compact relative to X if for every cover $\{V\alpha : \alpha \in \Delta\}$ of A by open sets of X, there exists a finite subset Δ_0 of Δ such that V_α is F-open for each $\alpha \in \Delta_0$ and $A \subset \cup \{V\alpha : \alpha \in \Delta_0\}.$

If X is F -compact relative to X, then X is said to be F -compact [1].

Theorem 3.15. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a continuous and F -preserving sur jection. If A is F-compact relative to X, then $f(A)$ is F -compact relative to Y.

Proof. Let $\{V\alpha : \alpha \in \Delta\}$ be any cover of $f(A)$ by open sets of Y. Then $A \subset f^{-1}(f(A)) \subset \cup \{f^{-1}(V_\alpha): \alpha \in \Delta\}$. Since f is continuous, $\{f^{-1}(V_\alpha): \alpha \in \Delta\}$ is an open cover of A. Since A is F -compact, there exists a finite subset Δ_0 of Δ such that $f^{-1}(V_\alpha)$ is F -open for each $\alpha \in \Delta_0$ and ${f^{-1}(V_\alpha): \alpha \in \Delta_0}$. Therefore, $f(A) \subset \cup f({f^{-1}(V\alpha)}:$ $\alpha \in \Delta_0$ $\}$ = \cup { $f(f^{-1}(V\alpha)) : \alpha \in \Delta_0$ } = \cup { V_c

 Δ_0 . Since $f^{-1}(V_\alpha)$ is F -open and f is F -preserving, then, $f(f^{-1}(Va)) = V_\alpha$ is F -open for each $\alpha \in \Delta_0$. Therefore, $f(A)$ is F -compact relative to Y.

Corollary 3.16. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be an F -continuous and F -open surjection. If X is F -compact, then Y is F -compact.

Proof. Every F -continuous (resp. F -open) function is continuous (resp. F -preserving). Hence this follows from immediately from Theorem 3.15.

Finally, and after we studied the properties of F -connected and F – separated sets we can state the relation between F connected and F – separated with connected and separated sets in the following proposition:

Proposition 3.17. *Let A, B and U be nonempty subsets of X:*

1. If A , B are F -separated, then A , B are separated.

2 If U is connected, then it is F -connected.

Proof.

1. If A, B are F -separated, then $A \cap Cl^F(B) =$ $Cl^F(A) \cap B$. Since $\tau F \subset \tau$, $Cl(A) \subset Cl^F(A)$ and $Cl(B) \subset$ $Cl^F(B)$. Hence $A \cap Cl(B) = empty = Cl(A) \cap B$. and are separated.

2. Suppose that U is not F -connected. Then, there exist nonempty F -separated sets A and B such that $U = A \cup B$. By (1) , A, B are separated and U is not connected.

4 REFERENCES

[1] M. H. Alqahtani, "Fopen and F -closed sets in topological spaces", *J. Pure Appl. Math.*, vol. 16, no. 2, pp. 819–832, 2023.

September-October