F-Separated Sets and F-Connected Spaces

M. Baloush^{1*}, T. Noiri²

¹National University College of Technology, Amman, Jordan ²22949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142, Japan *For Correspondence; Tel. +962799614970, Email: <u>malohblosh@yahoo.com</u>

ABSTRACT – In this paper, we introduce the definitions of F – separated sets, F – connected sets and F – compact sets and study their properties.

Keywords: F-open set, F-separated set, F-connected space, F-compact sets

1 INTRODUCTION

In 2023, Alqahtani has introduced the notion of F-open sets in a topological space. Every F-open set is an open set but not conversely. The family of F-open sets is not necessarily topology but has similar properties with open sets. In [1], the author obtained many properties of F-open sets. In this paper, we introduce F-separated sets and F-connected sets. In Section 2, we obtain several properties of F-separated sets. In Section 3, we investigate the further properties of F-connected and F-compact relative sets. Finally, it is shown that F-connected sets are preserved under F-continuous surjections.

Definition 1.1. [1] An open subset A of a topological space (X,τ) is called an F —open set if $Cl(A)\setminus A$ is a finite set. That is, A is an open set and the frontier of A is a finite set.

Definition 1.2. [1] A closed subset A of a topological space(X, τ) is called an F-closed set if $A \setminus Int(A)$ is a finite set. That is, A is a closed set and the frontier of A is a finite set.

Definition 1.3. [1] Let U be a subset of a topological space (X,τ) . Then, the F-closure of U is defined as the intersection of all F-closed sets containing U, and is denoted by $Cl^F(U)$.

2 F-SEPARATED SETS AND THIER PROPERTIES

In this section we will define the F -separated sets and discuss their properties.

Definition 2.1. Let (X,τ) be a topological space and A,B be nonempty subsets of X. Then A and B are said to be F – separated if $A \cap Cl^F(B) = \emptyset$ and $Cl^F(A) \cap B = \emptyset$.

Theorem 2.2. Let A and B be F – separated sets in a space X, and let D and K be nonempty subsets of A and B, respectively. Then D and K are also F – separated in X.

Proof. Let D and K be nonempty subsets of the F – separated sets A and B, respectively. Since $D \subseteq A$, then $Cl^F(D) \subseteq Cl^F(A)$. But $Cl^F(A) \cap B = \emptyset$ which implies that $Cl^F(D) \cap B = \emptyset$, and since $K \subseteq B$, then

$$Cl^F(D) \cap K = \emptyset \cdots \cdots (1).$$

Similarly, since $K \subseteq B$, then $Cl^F(K) \subseteq Cl^F(B)$. Now $A \cap Cl^F(B) = \emptyset$ which implies that $A \cap Cl^F(K) = \emptyset$, and since $D \subseteq A$, then

$$D \cap Cl^F(K) = \emptyset \cdots \cdots (2)$$

By (1) and (2), we get $Cl^F(D) \cap K = \emptyset$ and $D \cap Cl^F(K) = \emptyset$. Therefore, D and K are F — separated in X.

Theorem 2.3. Let A, B be nonempty disjoint subsets of a space X such that A and B are either both F – open or both F – closed. Then A and B are F – separated.

Proof. Let *A*, *B* be nonempty subsets of *X*.

(1) Suppose that A and B are both F – closed. Since

- $A \cap B = \emptyset$, then $A \cap B = A \cap Cl^F(B) = Cl^F(A) \cap B = \emptyset$. Therefore, A and B are F separated.
- (2) Suppose that A and B are both F open. Since $A \cap B = \emptyset$. Then $A \subseteq X B$ which implies that $Cl^F(A) \subseteq Cl^F(X B) = X B$. Hence $Cl^F(A) \subseteq X B$, and $Cl^F(A) \cap B = \emptyset$. Similarly, we have $Cl^F(B) \cap A = \emptyset$. Therefore A and B are F separated.

Theorem 2.4. Let A, B be nonempty subsets of X such that A, B are either both F – open or both F – closed. If $C = A \cap (X - B)$ and $D = B \cap (X - A)$, then C, D are F – separated. Proof. Let A, B be nonempty subsets of X.

- (1) Suppose that A and B are both F- closed. Since $C=A\cap (X-B)$, then $C\subseteq A$, which implies that $Cl^F(C)\subseteq Cl^F(A)=A$. Hence $Cl^F(C)\cap D=\emptyset$. Similarly, since $D=B\cap (X-A)$, then $D\subseteq B$, which implies that $Cl^F(D)\subseteq Cl^F(B)=B$.Hence $Cl^F(D)\cap C=\emptyset$. Therefore C and D are F—separated.
- (2) Suppose that A and B are both F open, and since $C = A \cap (X B)$, then $C \subseteq X B$, which implies that $Cl^F(C) \subseteq Cl^F(X B) = X B$. Hence $Cl^F(C) \cap D = \emptyset$. Similarly, we have $Cl^F(D) \cap C = \emptyset$. Therefore C and D are F separated.

Theorem 2.5. Let A, B be nonempty subsets of X. Then A, B are F — separated if and only if there exist F — open sets U and V such that $A \subseteq U, B \subseteq V, A \cap V = \emptyset$, and $B \cap U = \emptyset$. Proof. Necessity. Let A, B be F — separated sets. Since $A \cap Cl^F(B) = \emptyset$ and $Cl^F(A) \cap B = \emptyset$, then $A \subseteq X - Cl^F(B)$ and $B \subseteq X - Cl^F(A)$. Since $Cl^F(A), Cl^F(B)$ are F — open sets and $A \subseteq U$ and $B \subseteq V$. Now $A \subseteq Cl^F(A) = X - V$, then $A \cap V = \emptyset$. Similarly, Since $B \subseteq Cl^F(B) = X - U$, then $B \cap U = \emptyset$.

Sufficiency. let U and V be F — open sets such that $A \subseteq U, B \subseteq V, A \cap V = \emptyset$, and $B \cap U = \emptyset$. Since U and V are F — open sets, then X - U and X - V are F — closed sets. But $A \cap B = \emptyset$, then $A \subseteq X - V$ and $B \subseteq X - U$. Now, $Cl^F(A) \subseteq Cl^F(X - V) = X - V$ which implies that $Cl^F(A) \cap V = \emptyset$ and then $Cl^F(A) \cap B = \emptyset$. Similarly, since $B \subseteq X - U$, then $Cl^F(B) \subseteq Cl^F(X - U) = X - U$ which implies that $Cl^F(B) \cap U = \emptyset$ and then $Cl^F(B) \cap A = \emptyset$. Therefore, A, B are F — separated.

3 F-CONNECTED SETS AND THIER PROPERTIES

In this section we will define the F –connected sets and discuss their properties.

Definition 3.1. A subset A of X is said to be F — connected if it can not be represented as the union of two nonempty F — separated sets. If X is F —connected, then X is called an F —

connected space.

Theorem 3.2. A non-empty subset C of X is F — connected if and only if for every pair of F — separated sets A and B in X with $C \subseteq A \cup B$, one of the following possibilities holds:

- 1. $C \subseteq A \text{ and } C \cap B = \emptyset$,
- 2. $C \subseteq B \text{ and } C \cap A = \emptyset$.

Proof. Necessity. Let C be an F – connected subset of X. Let A and B be F-separated sets in X such that $C \subseteq A \cup B$, then $C \cap B = \emptyset$ and $C \cap A = \emptyset$ can not hold at the same time. If $C \cap B = \emptyset$, then $C \subseteq A$, and if $C \cap A = \emptyset$, then $C \subseteq B$. Finally, if $C \cap B \neq \emptyset$ and $C \cap A \neq \emptyset$, then by Theorem 2.2, both $C \cap B$ and $C \cap A$ are F – separated and $C = (C \cap B) \cup (C \cap A)$ which is a contradiction since C is connected subset Sufficiency. Suppose C is not an F – connected set of X, then there exists two nonempty F – separated sets A and Bin X such that $C = A \cup B$. By conditions (1) and (2) we have either $C \cap B = \emptyset$ or $C \cap A = \emptyset$ which implies that either $A = \emptyset$ or $B = \emptyset$ which is a contradiction since A and B are nonempty sets in X. Therefore, C is an F – connected set of Χ.

Theorem 3.3. Let U be a subset of of X. Then the following are equivalent;

- 1. U is F connected,
- 2. There exist no two F- closed sets A and B such that $A \cap U \neq \emptyset$, $B \cap U \neq \emptyset$, $U \subseteq A \cup B$ and $A \cap B \cap U = \emptyset$.
- 3. There exist no two F- closed sets A and B such that $U \nsubseteq A, U \nsubseteq B, U \subseteq A \cup B$ and $A \cap B \cap U = \emptyset$.

Proof.

- 1. $(1 \Rightarrow 2)$: Suppose that there exist two F closed sets A and B such that $A \cap U \neq \emptyset$, $B \cap U \neq \emptyset$, $U \subseteq A \cup B$ and $A \cap B \cap U = \emptyset$. Then $(A \cap U) \cup (B \cap U) = (A \cup B) \cap U = U$, and $Cl^F(A \cap U) \cap (B \cap U) \subseteq Cl^F(A) \cap (B \cap U) = A \cap B \cap U = \emptyset$ Hence, $Cl^F(A \cap U) \cap (B \cap U) = \emptyset$. By the same argument we get $(A \cap U) \cap Cl^F(B \cap U) = \emptyset$. Therefore, U is not F connected. This shows that (1) implies (2).
- 2. $(2 \Rightarrow 3)$: Let (2) hold and suppose that there exist two F closed sets A and B such that $U \nsubseteq A, U \nsubseteq B, U \subseteq A \cup B$ and $A \cap B \cap U = \emptyset$. Then $A \cap U \neq \emptyset$ and $B \cap U \neq \emptyset$ which is a contradiction.
- 3. (3) \Rightarrow (1): Suppose that U is not F connected. Then there exist two non-empty F separated sets C and D such that $U = C \cup D$. Now $Cl^F(C) \cap D = C \cap Cl^F(D) = \emptyset$. Let $A = Cl^F(C)$ and $B = Cl^F(D)$, then $U \subseteq A \cup B$ and $Cl^F(C) \cap Cl^F(D) \cap (C \cup D) = (Cl^F(C) \cap Cl^F(D) \cap (C)) \cup (Cl^F(C) \cap Cl^F(D) \cap (D)) \subset (Cl^F(D) \cap C) \cup (D \cap Cl^F(C) = \emptyset$. Now if $U \subseteq A$, then $Cl^F(D) \cap U = B \cap U = B \cap (U \cap A) = \emptyset$, which is a contradiction, then $U \nsubseteq A$. Similarly, $U \nsubseteq B$. Thus U is a F connected.

Theorem 3.4. Let U be an F – connected subset of X. If $U \subseteq V \subseteq Cl^F(U)$, then V is also F – connected. *Proof.* Let U be an F – connected subset of X such that

 $U \subseteq V \subseteq Cl^F(U)$. Suppose that V is not F — connected. Then by Theorem 3.3, there exists two F — closed sets A and B such that $V \nsubseteq A, V \nsubseteq B, V \subseteq A \cup B$ and $A \cap B \cap V = \emptyset$. Since $U \subseteq V$, then $U \subseteq A \cup B$ and $A \cap B \cap U = \emptyset$. Now if $U \subseteq A$, then $Cl^F(U) \subseteq Cl^F(A) = A$. Therefore, $V \subseteq A$ which is a contradiction. Thus $U \nsubseteq A$. By the same argument, $U \nsubseteq B$. Which contradicts that U is a F — connected.

Corollary 3.5. If U is an F – connected subset of X, then Cl(U) is F-connected.

Prof. Since every *F*-open set is open, $Cl(U) \subset Cl^F(U)$ and by Theorem 3.4, Cl(U) is *F*-connected.

Theorem 3.6. If A and B are F — connected subsets of a space X and A, B are not F-separated, then $A \cup B$ is F-connected.

Proof. Let A and B be F — connected subsets of a space X. Suppose that $A \cup B$ is not F-connected. Then, there exist two non-empty F-separated sets G and H such that $A \cup B = G \cup H$. Hence, $Cl^F(G) \cap H = \emptyset$ and $G \cap Cl^F(H) = \emptyset$. Since A and B are F-connected, $A \subset G$ or $A \subset H$, and $B \subset G$ or $B \subset H$. Therefore, (i) $A \subset G$ and $B \subset H$ or (ii) $A \subset H$ and $B \subset G$.

- (i) Suppose that $A \subset G$ and $B \subset H$. Then, $A \cap H \subset G \cap H = \emptyset$ and $B \cap G \subset H \cap G = \emptyset$. Therefore, $(A \cup B) \cap G = (A \cap G) \cup (B \cap G) = (A \cap G) = A$ and $(A \cup B) \cap H = (A \cap H) \cup (B \cap H) = (B \cap H) = B$. Hence $Cl^F(A) \cap B = Cl^F([(A \cup B) \cap G]) \cap [(A \cup B) \cap H] \subset Cl^F(G) \cap H = \emptyset$ and $Cl^F(A) \cap B = \emptyset$. Similarly, we obtain $A \cap Cl^F(B) = \emptyset$. This shows that A, B are F-separated. This is a contradiction.
- (ii) Suppose that $B \subset G$ and $A \subset H$. Then, $B \cap H \subset G \cap H = \emptyset$ and $A \cap G \subset H \cap G = \emptyset$. Therefore, $(A \cup B) \cap H = (A \cap H) \cup (B \cap H) = A \cap H = A$ and $(A \cup B) \cap G = (A \cap G) \cup (B \cap G) = B \cap G = B$. Hence $Cl^F(A) \cap B = Cl^F([(A \cup B) \cap H]) \cap B \subset Cl^F(H) \cap G = \emptyset$ and $A \cap Cl^F(B) = A \cap Cl^F[(A \cup B) \cap G] \subset H \cap Cl^F(G) = \emptyset$. This shows that A, B are F-separated. This is a contradiction.

Therefore, $A \cup B$ is F-connected.

Corollary 3.7. If A and B are F — connected subsets of a space X and A, B are disjoint, then $A \cup B$ is F-connected. Proof. If A, B are disjoint, then A, B are not F-separated. By Theorem 3.1, $A \cup B$ is F-connected.

Theorem 3.8. If $\{M_{\alpha}: \alpha \in \Delta\}$ is a nonempty family of F-connected subsets of a space (X, τ) and $\bigcap_{\alpha \in \Delta} M_{\alpha} \neq \emptyset$, then $\bigcup_{\alpha \in \Delta} M_{\alpha}$ is F-connected.

Proof. Suppose that $\bigcup_{\alpha \in \Delta} M_{\alpha}$ is not F-connected. Then there exist nonempty F-separated sets H, G such that $\bigcup_{\alpha \in \Delta} M_{\alpha} = H \cup G$. Since $\bigcap_{\alpha \in \Delta} M_{\alpha} \neq \emptyset$, there exists a point $x \in \bigcap_{\alpha \in \Delta} M_{\alpha}$ and $x \in \bigcup_{\alpha \in \Delta} M_{\alpha}$. Therefore, $x \in H$ or $x \in G$. (i) Let $x \in H$. Since $x \in M_{\alpha}$ for every $\alpha \in \Delta$ and $M_{\alpha} \subset H \cup G$, by Theorem 3.2, $M_{\alpha} \subset H$ or $M_{\alpha} \subset G$. Since $H \cap G = \emptyset$, we have the following: (a) if $M_{\alpha} \subset H$ for every $\alpha \in \Delta$, then $\bigcup_{\alpha \in \Delta} M_{\alpha} \subset H$ and $G = \emptyset$. This is a contradiction. (b) if $M_{\alpha} \subset G$ for every $\alpha \in \Delta$, then $\bigcup_{\alpha \in \Delta} M_{\alpha} \subset G$ and $H = \emptyset$. This is a contradiction. (ii) Let $x \in G$. Since $x \in M_{\alpha}$ for every $x \in A$ and $x \in A$ and $x \in A$ and $x \in A$ by Theorem 3.2, $x \in A$ or $x \in A$ or $x \in A$ and $x \in A$ and $x \in A$ then $y \in A$ by Theorem 3.2, $y \in A$ or $y \in A$ and $y \in A$ and $y \in A$ then $y \in A$ and $y \in A$ and $y \in A$ and $y \in A$ then $y \in A$ and $y \in A$ and $y \in A$ and $y \in A$ then $y \in A$ and $y \in A$ and $y \in A$ and $y \in A$ and $y \in A$ then $y \in A$ and $y \in A$ and $y \in A$ and $y \in A$ then $y \in A$ and $y \in A$ and $y \in A$ and $y \in A$ then $y \in A$ and $y \in$

 $M_{\alpha} \subset H$ for every $\alpha \in \Delta$, $\bigcup_{\alpha \in \Delta} M_{\alpha} \subset H$ and $G = \emptyset$. This is a contradiction. Therefore, x is not contained in $H \cup G = \bigcup_{\alpha \in \Delta} M_{\alpha}$. This is a contradiction. Consequently, $\bigcup_{\alpha \in \Delta} M_{\alpha}$ is F-connected.

Corollary 3.9. Let (X, τ) be a topological space. Then:

- 1) If each pair of points x, y in a space (X, τ) lies in some F-connected subset $E_{x,y}$ of X, then X is F-connected.
- 2) If $X = \bigcup_{n=1}^{\infty} X_n$, where each X_n is F-connected and $X_{n-1} \cap X_n \neq \emptyset$ for each $n \geq 2$, then X is F-connected. Proof.
- 1) Choose a point $a \in X$ and fix it. Then, for each point $x \in X$, there exists an F-conneced set E_x such that $x, a \in E_x$ and hence $X = \bigcup_{x \in X} E_x$. By Theorem 3.8, X is F-connected.
- 2) X_1 is F-connected. If $X_1 \cup ... \cup X_{n-1}$ is F-connected, by Theorem 3.1 $A_n = X_1 \cup ... \cup X_n$ is F-connected for n = 1,2,..., where $\bigcap A_n = X_1 \neq \emptyset$ and by Theorem 3.8 $X = \bigcup_{n=1}^{\infty} A_n$ is F-connected.

Theorem 3.10. Let $\{M_{\alpha}: \alpha \in \Delta\}$ be a nonempty family of F-connected subsets of a space (X,τ) and A be a nonempty F-connected set. If $A \cap M_{\alpha} \neq \emptyset$ for each $\alpha \in \Delta$, then $A \cup (\cup_{\alpha \in \Delta} M_{\alpha})$ is F-connected.

Proof. Since $A \cap M_{\alpha} \neq \emptyset$ for each $\alpha \in \Delta$, by Theorem 3.6, $A \cup M_{\alpha}$ is F-connected for each $\alpha \in \Delta$. Moreover, $A \cup (\cup_{\alpha \in \Delta} M_{\alpha}) = \cup (A \cup_{\alpha \in \Delta} M_{\alpha})$ and $\cap (A \cup M_{\alpha}) \supset A \neq \emptyset$. Therefore, by Theorem 3.3 $A \cup (\cup_{\alpha \in \Delta} M_{\alpha})$ is F-connected.

Definition 3.11. A function $f:(X,\tau) \to (Y,\sigma)$ is said to be *F*-continuous if for each open set $V \in \sigma$, $f^{-1}(V)$ is *F*-open in (X,τ) .

Theorem 3.12. If $f:(X,\tau) \to (Y,\sigma)$ is an F-continuous surjection and (X,τ) is F-connected, then (Y,σ) is F-connected.

Proof. Suppose that (Y, σ) is not F-connected. Then, there exist F-separated sets A and B such that $A \neq \emptyset$, $B \neq \emptyset$, $Y = A \cup B$. Hence $Cl^F(A) \cap B = \emptyset = A \cap Cl^F(B)$. Since f is F-continuous, $f^{-1}(Cl(A))$ is F-closed and $f^{-1}(A) \subset$ Therefore, $Cl^F(f^{-1}(A)) \subset f^{-1}(Cl(A)) \subset$ $f^{-1}(Cl(A)).$ $f^{-1}(Cl^F(A))$ hence $Cl^F(f^{-1}(A)) \cap f^{-1}(B) \subset$ and $f^{-1}(Cl^F(A)) \cap f^{-1}(B) = f^{-1}(Cl^F(A) \cap B) = \emptyset$. Similarly, we obtain $f^{-1}(A) \cap Cl^F(f^{-1}(B)) = \emptyset$. Hence, $f^{-1}(A)$ and $f^{-1}(B)$ are F-separated. Since f is surjective, $f^{-1}(A)$ and $f^{-1}(B)$ are nonempty. Moreover, $X = f^{-1}(Y) =$ $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$. This shows that (X, τ) is not *F*-connected.

After we studied the properties of F-connected and F-separated sets we can state the relation between F-connected and F- separated with connected and separated sets in the following proposition:

Proposition 21.

- 1. Let A, B be nonempty subsets of X. If A, B are F –separated, then A, B are separated.
- 2. Let U be a subset of X. If U is connected, then it is F –connected.

Proof.

1. If A, B are F -separated, then $A \cap Cl^F(B) = empty = Cl^F(A) \cap B$. Since $\tau F \subset \tau$, $Cl(A) \subset Cl^F(A)$ and $Cl(B) \subset Cl^F(B)$. Hence $A \cap Cl(B) = empty = Cl(A) \cap B$. and A, B are separated.

2. Suppose that U is not F —connected. Then, there exist nonempty F —separated sets A and B such that $U = A \cup B$. By (1), A, B are separated and U is not connected.

Definition 3.13. A function $f:(X,\tau) \to (Y,\sigma)$ is F – open [1] (resp. F –preserving) if f(U) is F –open in Y for each open (resp. F –open) set U in X.

It is obvious that every F-open function is F-preserving.

Definition 3.14. Let (X, τ) be a topological space and A be a subset of X. A is said to be F —compact relative to X if for every cover $\{V\alpha: \alpha \in \Delta\}$ of A by open sets of X, there exists a finite subset Δ_0 of Δ such that V_α is F-open for each $\alpha \in \Delta_0$ and $A \subset \bigcup \{V\alpha: \alpha \in \Delta_0\}$.

If X is F —compact relative to X, then X is said to be F —compact [1].

Theorem 3.15. Let $f: (X, \tau) \to (Y, \sigma)$ be a continuous and F –preserving sur jection. If A is F-compact relative to X, then f(A) is F –compact relative to Y.

Proof. Let $\{V\alpha: \alpha \in \Delta\}$ be any cover of f(A) by open sets of Y. Then $A \subset f^{-1}(f(A)) \subset \bigcup \{f^{-1}(V_{\alpha}): \alpha \in \Delta\}$. Since f is continuous, $\{f^{-1}(V_{\alpha}): \alpha \in \Delta\}$ is an open cover of A. Since A is F -compact, there exists a finite subset Δ_0 of Δ such that $f^{-1}(V_{\alpha})$ is F -open for each $\alpha \in \Delta_0$ and $A \subset \bigcup \{f^{-1}(V_{\alpha}): \alpha \in \Delta_0\}$. Therefore, $f(A) \subset \bigcup f(\{f^{-1}(V\alpha): \alpha \in \Delta_0\}) = \bigcup \{f(f^{-1}(V\alpha)): \alpha \in \Delta_0\}\} = \bigcup \{V_{\alpha}: \alpha \in \Delta_0\}$. Since $f^{-1}(V_{\alpha})$ is F -open and F is F -preserving, then, F is F -compact relative to F.

Corollary 3. 16. Let $f:(X,\tau)\to (Y,\sigma)$ be an F —continuous and F —open surjection. If X is F —compact, then Y is F —compact.

Proof. Every F —continuous (resp. F —open) function is continuous (resp. F —preserving). Hence this follows from immediately from Theorem 3.15.

Finally, and after we studied the properties of F-connected and F — separated sets we can state the relation between F-connected and F — separated with connected and separated sets in the following proposition:

Proposition 3.17. Let A, B and U be nonempty subsets of X:

1. If A, B are F — separated, then A, B are separated.

2. If U is connected, then it is F — connected.

Proof.

- 1. If A, B are F —separated, then $A \cap Cl^F(B) = empty = Cl^F(A) \cap B$. Since $\tau F \subset \tau$, $Cl(A) \subset Cl^F(A)$ and $Cl(B) \subset Cl^F(B)$. Hence $A \cap Cl(B) = empty = Cl(A) \cap B$. and A, B are separated.
- 2. Suppose that U is not F —connected. Then, there exist nonempty F —separated sets A and B such that $U = A \cup B$. By (1), A, B are separated and U is not connected.

4 REFERENCES

[1] M. H. Alqahtani, "Fopen and F—closed sets in topological spaces", J. Pure Appl. Math., vol. 16, no. 2, pp. 819–832, 2023.